Накопители энергии: очевидные и невероятные

Накопители энергии: очевидные и невероятные

Штангисты знают, что поднять вес мало — важно его удержать. Сколько бы мы ни произвели чистой — или любой другой — энергии, от нее будет мало толка, если мы не умеем ее хранить. Но что способно накапливать гигаватт- и тераватт-часы, а в нужный момент за секунды отдать их в сеть? Только что-нибудь по-настоящему серьезное. Водохранилища и поезда, бетонные поплавки и даже лифты-многотонники, разработанные в Новосибирске. О них мы и поговорим, вспомнив по пути школьную физику.

Профессор из Беркли Дэвид Каммен считает электросети самой сложной машиной, которую когда-либо создавало человечество: «Она самая большая, самая дорогая, включает больше всего компонентов и при этом элегантно проста. В ее основе лежит единственный принцип — приток энергии должен постоянно равняться оттоку». Система работает как ресторан быстрого питания: сколько заказано блюд, столько и приготовлено, лишнее приходится выбрасывать. Между тем потребление электроэнергии меняется постоянно и довольно ощутимо.

Взглянув на графики, легко заметить, что нагрузка на сеть следует суточным и недельным циклам и повышена во время зимних холодов. Работа солнечных электростанций с этими периодами согласуется плохо: излучение есть именно тогда, когда его энергия меньше всего нужна, — днем. А ярче всего солнце светит летом. Производство электроэнергии ветряными станциями тоже подчиняется погодным условиям. Реакторы АЭС нельзя подстраивать под нужды потребителей: они выдают постоянное количество энергии, так как должны функционировать в стабильном режиме. Регулировать подачу тока в сеть приходится, меняя объемы сжигаемого топлива на газовых и угольных ТЭС. Энергосеть постоянно балансирует между выработкой электростанций и нуждами потребителей.

Cравнение потребления и генерации электроэнергии различными источниками на примере декабря 2012 года (по данным BM Reports).

Если бы тепловые электростанции не приходилось регулировать и они могли работать всегда в оптимальном режиме, их ресурс был бы выше, а стоимость и потребление топлива — ниже. Но для этого сеть должна иметь запас энергии, который накапливался бы в периоды избыточного производства и отдавался на пиках потребления. Ну а если уж мы хотим вовсе отказаться от углеводородов и использовать только чистое электричество возобновляемых источников, то без средств для накопления энергии и стабилизации ее подачи в сеть никак не обойтись… Есть идеи?

Варианты очевидные

Электросети начали проектировать больше века назад с учетом технологий того времени, и сегодня даже в самых развитых странах они нуждаются в модернизации, в том числе во введении «амортизирующего» компонента, накопителей соответствующей мощности. Пока что такими проектами не могут похвастаться даже США: по данным за 2017 год, все имевшиеся в стране промышленные накопители имели мощность лишь около 24,2 ГВт, тогда как генерирующие мощности составили 1081 ГВт. Текущие возможности России в области накопления — чуть больше 2 ГВт, а всего мира — 175,8 ГВт.

Почасовое потребление в Великобритании в течение одного зимнего и одного летнего месяцев 2009 года. Максимум потребления пришелся на шесть часов январского утра (58,9 ГВт), минимум — на теплый субботний вечер в июле (22,3 ГВт), разница более чем вдвое.

Почти весь этот объем приходится на гидроаккумулирующие электростанции (ГАЭС). Самая большая в России Загорская ГАЭС имеет мощность 1,2 ГВт, а самая мощная в мире работает в Вирджинии. Станция Bath County мощностью 3 ГВт и высотой 380 м способна накачивать воду в верхний резервуар и спускать в нижний со скоростью около 50 тыс. т в минуту. Такие накопители превращают электричество в потенциальную энергию воды и вырабатывают его обратно с потерями лишь 30%. Однако их недостатки вполне очевидны: водохранилища требуют сложного рельефа, обширной и часто нужной площади и связаны с неизбежными потерями на испарение.

Сегодня больше 98% мировых мощностей накопителей приходится на ГАЭС, а из оставшегося количества около трети используется в химических аккумуляторах. Прежде всего, это обычные литий-ионные батареи: крошечные размеры ионов лития делают их отличными носителями заряда, позволяя добиться высокой плотности энергии. По оценке Джорджа Крабтри из Аргоннской национальной лаборатории министерства энергетики США, литий-ионным аккумуляторам для широкого применения необходимо стать как минимум впятеро более емкими и на столько же более дешевыми. Но даже в этом случае они останутся токсичными и взрывоопасными.

Некоторых их недостатков лишены альтернативные проекты: сегодня создан целый «зоопарк» электрохимических элементов. Например, аккумуляторы профессора Дональда Садоуэя на основе жидких металлических электродов и расплава соли требуют для работы высоких температур, зато они безопасны и намного дешевле литий-ионных. Однако любые батареи со временем неизбежно деградируют и уже лет через десять потребуют серьезных и регулярных вложений в обновление… Что нам остается, помимо этого?

Школьная физика

Инженеры любят простые и остроумные решения, и многие проекты накопителей основаны на довольно простой физике. Базовые формулы, позволяющие оценить энергию таких систем, проходят еще в средней школе. Скажем, вращательная кинетическая энергия пропорциональна массе и квадрату скорости, что позволяет сохранять электрическую энергию во вращении тяжелого маховика. Такие накопители отличаются великолепной управляемостью и надежностью, они используются на транспорте и даже в космосе. Однако самые мощные из них способны обеспечить разве что небольшую электростанцию, стабилизируя выдачу тока, и эффективны лишь на небольших промежутках времени — не больше четверти часа.

Из той же школьной физики мы помним, что энергия идеального газа пропорциональна его давлению, что дает возможность накопить ее в виде сжатого воздуха. Емкостью для него могут служить герметичные цистерны, как у 9-мегаваттного накопителя Next Gen CAES на одной из электростанций в Нью-Йорке, штольни заброшенных шахт или естественные пещеры-каверны. На том же принципе разницы давлений работает предложенный немецкими инженерами концепт ORES. Полые бетонные емкости погружаются на дно и подключаются к офшорной электростанции: избыток энергии они накапливают, закачивая внутрь воду, а при необходимости она под давлением сжатого внутри воздуха выбрасывается наружу, запуская генератор.


Баланс на масштабах от секунд до недель

Накопители энергии, работающие на разных принципах, имеют свои преимущества и недостатки, и могут подходить для различных задач. Одни оптимальны в поддержке электростанций, другие — на этапе передачи и распределения энергии, третьи — для крупных потребителей, четвертые — для конечных пользователей, в их домах и мобильных гаджетах.

Пригодится нам и энергия тепловая: например, концерн Siemens уже сооружает для одной из ветряных электростанций под Гамбургом накопитель, запасающий энергию в тепле 100 тонн камня. Избыток выработки будет направляться на их нагрев, чтобы затем груз, остывая, превращал воду в пар, вращающий турбину генератора. Впрочем, чаще энергию градиента температуры используют для накопителей энергии на солнечных электростанциях. Зеркала концентраторов фокусируют свет, раскаляя теплоноситель (обычно расплавленный солевой раствор), который продолжает отдавать тепло и днем, и ночью, когда солнце уже не светит, — в полном согласии с изученными в школе началами термодинамики.

Еще ближе нам элементарная формула потенциальной энергии тела в поле тяжести Земли: E = mgh (где m — масса груза, h — высота его подъема, g — ускорение свободного падения). Именно в таком виде запасают ее мощные и надежные ГАЭС или проект немецкой компании Heindl Energy, поднимающий водным столбом внутри цилиндра цельный гранитный поршень диаметром до 250 м. Потенциальную энергию накапливают и тяжелые железнодорожные составы проекта ARES, которые буксируют бетонные грузы вверх и вырабатывают ток, когда спускаются с ними. Но для всего этого нужно иметь наготове холм высотой в несколько сотен метров и — как в случае с ГАЭС — большую площадь под строительство… Есть ли другие возможности?


Гравитационный накопитель

Проект профессора Эдварда Хейндля обещает мощность до 8 ГВт — этого достаточно для того, чтобы обеспечивать энергией 2 млн потребителей в течение суток.

Вариант почти невероятный

Накопитель в новосибирском Академгородке много места не занимает. За самым обыкновенным забором стоит новенькое здание размером с пятиэтажку — шоу-рум, в котором размещен действующий прототип твердотельной аккумулирующей электростанции (ТАЭС) высотой 20 м и мощностью 10 кВт. Внутри здания вдоль стен расположены две узкие ячейки ТАЭС шириной около 2 м и длиной около 12.

Принцип работы их основан на накоплении потенциальной энергии: двигатель потребляет электроэнергию из сети и с помощью каната поднимает наполненные грунтом полимерные мешки. Они крепятся наверху и в любой момент готовы начать спуск, вращая вал генератора. По словам основателя проекта «Энергозапас» Андрея Брызгалова, инженеры изучили почти сотню идей для промышленных накопителей энергии, но не нашли подходящего варианта и создали собственный.


Твердотельный накопитель

Полномасштабная ТАЭС будет достигать 300 м в высоту и сможет накапливать до 10 ГВт·ч. При грузообороте до 14 млн т в сутки она будет производить на грунт давление до 4 кг/см2 — меньше, чем обычная пятиэтажка. Расчетный срок службы: 50 лет.

В самом деле, Россия — страна богатая, но не рельефом. «Это практически ровный стол, — рассказывает Андрей Брызгалов, — возводить ГАЭС можно лишь в отдельных районах, остальное — равнинная плоскость». В отличие от водохранилища, ТАЭС можно установить где угодно: для строительства не требуется водохранилищ и естественного перепада высот. Мешки заполняются местным грунтом, который добывают при строительстве фундамента, а строить можно в чистом поле, которого в России достаточно.

Оптимальная мощность ТАЭС при высоте 300 м будет порядка 1 ГВт, а емкость определяется площадью накопителя и при застройке 1 км² составит 10 ГВт·ч, то есть станция займет примерно в пять раз меньше места, чем аналогичная ГАЭС. Тысячи специальных многошахтных лифтов, снабженных системой рекуперации, будут перемещать за сутки около 15 млн т груза. «Ежедневный грузооборот одной такой ТАЭС будет всемеро больше, чем у крупнейшего мирового порта, Шанхайского, — объясняет Андрей Брызгалов. — Вы представляете себе уровень задачи?» Неудивительно, что дальше начинается физика уже отнюдь не школьного уровня.

«Мы не можем позволить себе строить сразу 300-метровую башню, — говорит Андрей Брызгалов, — это по меньшей мере легкомысленно. Поэтому мы делаем конструкцию минимальных размеров, при которых она обладает свойствами полноразмерной ТАЭС». Как только проект получит господдержку в рамках Национальной технологической инициативы, в «Энергозапасе» приступят к работе. Возведение 80-метровой башни мощностью более 3 МВт позволит испытать строительные решения, которые на данный момент прошли только модельные испытания на многоядерных компьютерных кластерах.

Сложная наука

В самом деле, какой бы простой ни была высотная конструкция, ей предстоит столкнуться с опасностью землетрясений и нагрузкой ветра. Но вместо обычных решений с применением все более мощных и тяжелых несущих элементов из стали и бетона ТАЭС использует массу инженерных находок. Для борьбы с ветром ее окружат защитной «юбкой», которая раскинется на ширину примерно в четверть радиуса самой станции. Она будет превращать горизонтальное давление ветра в вертикальную нагрузку, на которую рассчитана конструкция. «Это позволяет значительно сократить расходы на металл, который применяют для компенсации изгибных нагрузок, снизить себестоимость ТАЭС и тем самым поднять ее конкурентоспособность», — объясняют разработчики.

Сейсмические колебания демпфирует сама конструкция — матрица вертикальных колонн, к каждой четверке которых подвешено до девяти 40-тонных грузов. «В любой конкретный момент перемещается лишь небольшое количество груза, остальное действует как отвес, подавляя раскачивание. Несмотря на огромную массу, даже благодаря ей мы получили самое сейсмостойкое здание в мире, — уверяет Андрей Брызгалов, — причем практически без дополнительных расходов». Легкая, простая, лишенная перекрытий, такая башня будет в несколько раз дешевле обычного здания тех же размеров.

Накопители

ТипМощностьВремя откликаПродолжительность накопления и отдачиЭффективность накопления-отдачи
Гравитационные / ГАЭС, ТАЭС /МВт, ГВтСекунды, минутыОт часов до недель70−85%
Термические / солевые /МВтМинутыЧасы80−90%
Электрохимические / МВт Li-Ion и другие /Вт, МВтМиллисекундыМинуты, часы, дниДо 98%
Механические / маховики /Вт, кВт

Миллисекунды

Секунды, минутыДо 98%
Химические / водород, метан, этанол и т. п. /ГВтОт секунд до минутЧасыДо 45%

Накопители

ТипТипичные сроки службыОптимальные участки использованияПлюсыМинусы
Гравитационные / ГАЭС, ТАЭС /ДесятилетияГенерация, распределениеДешевизна, техн. зрелостьТребовательность к строит. участку, малая плотность
Термические / солевые /ДесятилетияГенерацияПростота, техн. зрелость, экономичностьПодходят лишь для солнечных электростанций с концентраторами
Электрохимические / МВт Li-Ion и другие /ГодыГенерация, распределение, потреблениеВысокая плотность накопления, глубоко развитая технологияПодходят лишь для солнечных электростанций с концентраторами
Механические / маховики /ГодыПотреблениеВысокая точность, отзывчивость, надежностьНе подходят для накопления в больших или достаточных масштабах
Химические / водород, метан, этанол и т. п. /ГодыГенерация, распределениеТехнология дешева и легко масштабируется от «домашних» до промышленных масштабовНизкая плотность накопления, опасность возгорания

Несмотря на внешнюю простоту, разработка накопителя потребовала не только знаний сложной физики и материаловедения, но даже аэродинамики и программирования. «Возьмите, например, провод, — объясняет Андрей Брызгалов. — Ни один не выдержит десятки миллионов циклов сгибания-разгибания, а мы рассчитываем на полвека бесперебойной работы. Поэтому передача энергии между подвижными частями ТАЭС будет реализована без проводов». Накопитель ТАЭС буквально нашпигован новыми технологиями, и десятки инженерных находок уже запатентованы.

Матричные преобразователи частоты тока позволяют мягко и точно управлять работой моторов и сглаживать выдачу энергии. Сложный алгоритм автоматически координирует параллельную работу нескольких тележек-подъемников и требует лишь удаленного присмотра со стороны оператора. «У нас есть специалисты десятков направлений, — говорит Андрей Брызгалов, — и все они работают, не ожидая моментального результата и окупаемости проекта в ближайшие 2−3 года. При этом создано решение, равного которому нет нигде в мире. Теперь его можно лишь повторить, но сделать такое с нуля было возможно только в России, только в Сибири, где есть такие люди».

Впрочем, без уверенности в том, что проект рано или поздно станет прибыльным, ничего бы не состоялось. «Проблема российской энергосистемы — избыток мощностей, — продолжает Андрей Брызгалов. — Исторически сложилось так, что мы генерируем больше, чем надо, и это позволяет немало экспортировать, но и создает серьезный запрос на аккумулирующие мощности». По оценкам Navigant Research, к 2025 году этот рынок будет расти средними темпами в 60% ежегодно и достигнет 80 млрд долларов. Возможно, эти деньги преобразуют типичный российский пейзаж, и где-то у горизонта обычной бесконечной плоскости появятся и станут привычными гигантские гравитационные накопители.



Сохрани статью себе в соцсеть!




Комментарии ( 0 )
    Оставить комментарий

    Ваш электронный адрес не будет опубликован. Обязательные поля помечены *