Эпигенетика: мутации без изменения ДНК

29.05.2018

Эпигенетика: мутации без изменения ДНК

Эпигенетика: мутации без изменения ДНК

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваша мама и бабушка. Ваши клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. Во многом благодаря клеточной памяти мы не похожи на шимпанзе, хотя имеем с ним примерно одинаковый состав генома. И эту удивительную особенность наших клеток помогла понять наука эпигенетика.

Эпигенетика — довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.

Эпигенетика: мутации без изменения ДНК
Многоликая эпигенетика

Эпигенетические процессы реализуются на нескольких уровнях. Метилирование действует на уровне отдельных нуклеотидов. Следующий уровень — это модификация гистонов, белков, участвующих в упаковке нитей ДНК. От этой упаковки также зависят процессы транскрипции и репликации ДНК. Отдельная научная ветвь — РНК-эпигенетика — изучает эпигенетические процессы, связанные с РНК, в том числе метилирование информационной РНК.

Управление мутацией

Развитие эпигенетики как отдельного направления молекулярной биологии началось в 1940-х. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта», объясняющую процесс формирования организма. Долгое время считалось, что эпигенетические превращения характерны лишь для начального этапа развития организма и не наблюдаются во взрослом возрасте. Однако в последние годы была получена целая серия экспериментальных доказательств, которые произвели в биологии и генетике эффект разорвавшейся бомбы.

Переворот в генетическом мировоззрении произошел в самом конце прошлого века. Сразу в нескольких лабораториях был получен ряд экспериментальных данных, заставивших генетиков сильно призадуматься. Так, в 1998 году швейцарские исследователи под руководством Ренато Паро из Университета Базеля проводили эксперименты с мухами дрозофилами, у которых вследствие мутаций был желтый цвет глаз. Обнаружилось, что под воздействием повышения температуры у мутантных дрозофил рождалось потомство не с желтыми, а с красными (как в норме) глазами. У них активировался один хромосомный элемент, который и менял цвет глаз.

Эпигенетика: мутации без изменения ДНК

К удивлению исследователей, красный цвет глаз сохранялся у потомков этих мух еще в течение четырех поколений, хотя они уже не подвергались тепловому воздействию. То есть произошло наследование приобретенных признаков. Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие сам геном, могут закрепляться и передаваться следующим поколениям.

Но, может, такое бывает только у дрозофил? Не только. Позже выяснилось, что у людей влияние эпигенетических механизмов тоже играет очень большую роль. Например, была выявлена закономерность, что предрасположенность взрослых людей к диабету 2-го типа может во многом зависеть от месяца их рождения. И это при том, что между влиянием определенных факторов, связанных со временем года, и возникновением самого заболевания проходит 50−60 лет. Это наглядный пример так называемого эпигенетического программирования.

Что же может связывать предрасположенность к диабету и дату рождения? Новозеландским ученым Питеру Глюкману и Марку Хансону удалось сформулировать логическое объяснение этого парадокса. Они предложили «гипотезу несоответствия» (mismatch hypothesis), согласно которой в развивающемся организме может происходить «прогностическая» адаптация к условиям обитания, ожидающимся после рождения. Если прогноз подтверждается, это увеличивает шансы организма на выживание в мире, где ему предстоит жить. Если нет — адаптация становится дезадаптацией, то есть болезнью.

Эпигенетика: мутации без изменения ДНК

К примеру, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день». Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек после рождения, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни.

Опыты, проведенные в 2003 году американскими учеными из Дюкского университета Рэнди Джиртлом и Робертом Уотерлендом, уже стали хрестоматийными. Несколькими годами ранее Джиртлу удалось встроить искусственный ген обычным мышам, из-за чего те рождались желтыми, толстыми и болезненными. Создав таких мышей, Джиртл с коллегами решили проверить: нельзя ли, не удаляя дефектный ген, сделать их нормальными? Оказалось, что можно: они добавили в корм беременным мышам агути (так стали называть желтых мышиных «монстров») фолиевую кислоту, витамин В12, холин и метионин, и в результате этого появилось нормальное потомство. Пищевые факторы оказались способными нейтрализовать мутации в генах. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, сами рождали нормальных мышей, хотя питание у них было уже обычное.

Эпигенетика: мутации без изменения ДНК
Метилирование ДНК

Метильные группы присоединяются к цитозиновым основаниям, не разрушая и не изменяя ДНК, но влияя на активность соответствующих генов. Существует и обратный процесс — деметилирование, при котором метильные группы удаляются и первоначальная активность генов восстанавливается.

Можно уверенно сказать, что период беременности и первых месяцев жизни наиболее важен в жизни всех млекопитающих, в том числе и человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни».

Судьба по наследству

Наиболее изученный механизм эпигенетической регуляции активности генов — процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Метилирование может влиять на активность генов несколькими способами. В частности, метильные группы могут физически препятствовать контакту фактора транскрипции (белка, контролирующего процесс синтеза информационной РНК на матрице ДНК) со специфичными участками ДНК. С другой стороны, они работают в связке с метилцитозин-связывающими белками, участвуя в процессе ремоделирования хроматина — вещества, из которого состоят хромосомы, хранилища наследственной информации.

В ответе за случайность

Эпигенетика: мутации без изменения ДНК

Почти все женщины знают, что во время беременности очень важно потреблять фолиевую кислоту. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином служит донором, поставщиком метильных групп, необходимых для нормального протекания процесса метилирования. Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах, поэтому разгрузочные диеты будущей мамы могут иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что дефицит в рационе этих двух веществ, а также фолиевой кислоты может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается просто трагической случайностью.

Также известно, что недоедание и стресс в период беременности меняет в худшую сторону концентрацию целого ряда гормонов в организме матери и плода — глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша начинают происходить негативные эпигенетические изменения в клетках гипоталамуса и гипофиза. Это чревато тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т. д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

 

Метилирование участвует во многих процессах, связанных с развитием и формированием всех органов и систем у человека. Один из них — инактивация X-хромосом у эмбриона. Как известно, самки млекопитающих обладают двумя копиями половых хромосом, обозначаемых как X-хромосома, а самцы довольствуются одной X и одной Y-хромосомой, которая значительно меньше по размеру и по количеству генетической информации. Чтобы уравнять самцов и самок в количестве генных производимых продуктов (РНК и белков), большинство генов на одной из X-хромосом у самок выключается.

 

Кульминация этого процесса происходит на стадии бластоцисты, когда зародыш состоит из 50−100 клеток. В каждой клетке хромосома для инактивации (отцовская или материнская) выбирается случайным образом и остается неактивной во всех последующих генерациях этой клетки. С этим процессом «перемешивания» отцовских и материнских хромосом связан тот факт, что женщины намного реже страдают заболеваниями, связанными с X-хромосомой.

Метилирование играет важную роль в клеточной дифференцировке — процессе, благодаря которому «универсальные» эмбриональные клетки развиваются в специализированные клетки тканей и органов. Мышечные волокна, костная ткань, нервные клетки — все они появляются благодаря активности строго определенной части генома. Также известно, что метилирование играет ведущую роль в подавлении большинства разновидностей онкогенов, а также некоторых вирусов.

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью и другими внешними факторами.

Данные, хорошо подтверждающие этот вывод, были получены в начале этого века американскими и европейскими исследователями. Ученые обследовали пожилых голландцев, родившихся сразу после войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944−1945 годов был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год или два позднее (или ранее).

Эпигенетика: мутации без изменения ДНК

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, было заметно понижено метилирование гена инсулиноподобного фактора роста (ИФР), из-за чего количество ИФР в крови повышалось. А этот фактор, как хорошо известно ученым, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче.

Позднее американский ученый Ламбер Люмэ обнаружил, что и в следующем поколении дети, родившиеся в семьях этих голландцев, также появлялись на свет с ненормально малым весом и чаще других болели всеми возрастными болезнями, хотя их родители жили вполне благополучно и хорошо питались. Гены запомнили информацию о голодном периоде беременности бабушек и передали ее даже через поколение, внукам.

Гены не приговор

Наряду со стрессом и недоеданием на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд.

Самый яркий и негативный пример — это, пожалуй, бисфенол-А, уже много лет применяющийся в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится в некоторых видах пластиковой тары — бутылок для воды и напитков, пищевых контейнеров.

 

Отрицательное воздействие бисфенола-А на организм заключается в способности «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК. Биологи из Гарвардской медицинской школы обнаружили способность бисфенола-А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Их коллеги из Колумбийского университета обнаружили способность бисфенола-А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам, женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером, покладистыми и спокойными.

К счастью, существуют продукты, оказывающие положительное влияние на эпигеном. Например, регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нем содержится определенное вещество (эпигаллокатехин-3-галлат), которое может активизировать гены-супрессоры (подавители) опухолевого роста, деметилируя их ДНК. В последние годы популярен модулятор эпигенетических процессов генистеин, содержащийся в продуктах из сои. Многие исследователи связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.

 

 

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *